Real ear measurements: Diagnostics and calibration via Wideband Acoustic Admittance Comparisons of Tympanometry & Middle Ear Reflectance

Jont B Allen, Sarah Robinson (UIUC) Sue Thompson (CUNY & St John's, Queens, NY) Judi Lapsley Miller, Pat Jeng (Mimosa)

March 6, 2014

Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali

March 6, 2014 1 / 25

Outcome results:

By the end of this presentation you should understand:

- The operational principles of tympanometry
- The impact of MEP on TM admittance
- S The operational principles of Middle ear impedance/reflectance
- The operational principles of wide-band reflectance
- S The relative utility of Reflectance vs. Tympanometry
- The importance of wide-band TM admittance to the clinical diagnostic utility of middle ear pathologies,
- How to compensate for the residual ear-canal volume on the TM compliance/admittance estimate,
- Practical differences between clinical Tympanometry and Reflectance
- Solution Key literature on middle ear diagnostics

- 4 間 5 - 4 三 5 - 4 三 5

Abstract

The middle ear (ME) is the window into the cochlea. Middle-ear pathologies, especially with cochlear-impaired ears, are common, and objective diagnostic methods over relevant speech frequencies (0.3-7.3 kHz) are limited. Wideband Acoustic Immittance (WAI) of the ME (aka: Admittance/reflectance) is of special importance because it can more reliably provide key diagnostic information across a wider frequency range than tympanometry.

- WAI can accurately estimate tympanic membrane (TM) compliance. The ear canal compliance may be estimated based on the delay to the first significant (i.e., TM) reflection. We will explain why such an estimate is more reliable.
- WAI provides valuable ME diagnostic information for differential evaluation of TM perforations, otosclerosis, disarticulations, dehiscence, hypermobile TMs, ME reflex, and other TM and ME conditions through non-invasive and objective measurements.
- WAI allows for greatly improved real ear calibrations [forward pressure level (FPL) calibration], by removing the effect of ear-canal standing waves. These standing waves can range from 3-8 kHz, and cause errors up to 20 dB. Only a free-field calibration (FFC) can compete with FPL, but it is not a viable clinical option.

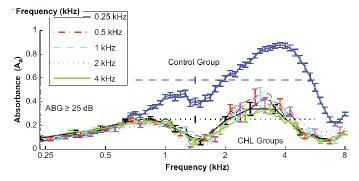
Thus WAI has many advantages, strongly impacting on our ability to diagnose ME pathology and to obtain more accurate audiometric measurements, hence more accurate long-term monitoring of auditory status.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇◇◇

Can TM Reflectance/Admittance supplement existing clinical methodology?

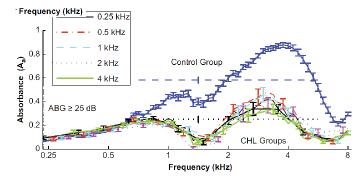
We will attempt to answer these questions.

- What is the evidence?
- Is it practical?
- To what extent?
- When can we have it?

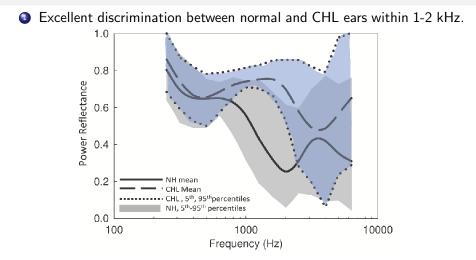

Review of Reflectance/Admittance literature (2013)

- Wide-band power reflectance/admittance has been shown to be useful in diagnosing many sources of Conductive Hearing Loss (CHL):
 - TM Perforation Allen et al. [2005], Feeney et al. [2003], Voss et al. [2001]
 - Ossicular disruption [Feeney et al., 2003, 2009]
 - 3 Analysis of Reflectance in clinical-CHL subjects [Rosowski et al., 2011]
 - Semicircular canal dehiscence [Nakajima et al., 2012]
 - S CHL and DPOAE [Sanford et al., 2009]
 - OHL in infants Prieve et al. [2012]
 - Cadaver studies of CHL [Voss et al., 2008, 2012]
 - Otitis media [Beers et al., 2010]
 - Otosclerosis [Shahnaz et al., 2009, Feeney et al., 2003]
 - Biofilm (chronic condition) [Nguyen et al., 2013]
 - Reduction of False Positives for OAE Infant Hearing Screening [Hunter, 2007, Hunter et al., 2010]
 - 😰 . . .

・ロト ・ 一日 ・ ・ 日 ・

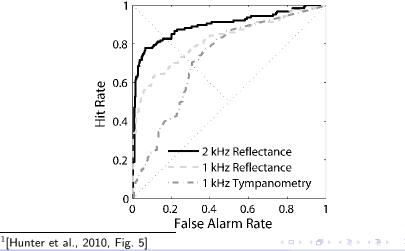

Conductive Hearing Loss in Children

 Minimal overlap between 0.75-6 kHz for normal-hearing and CHL infants, diagnosed with an *air bone gap* (ABG) Keefe et al. [2012]


Conductive Hearing Loss in Children

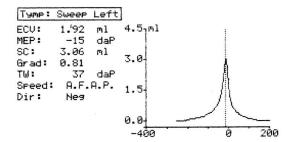
 Minimal overlap between 0.75-6 kHz for normal-hearing and CHL infants, diagnosed with an *air bone gap* (ABG) Keefe et al. [2012]

The key frequency region is 1-5 [kHz].

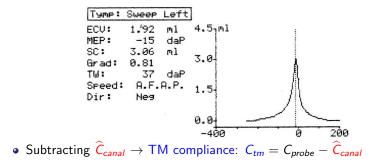

Reflectance results: Infants

Composite from Fig 3 Prieve et al. (2013)

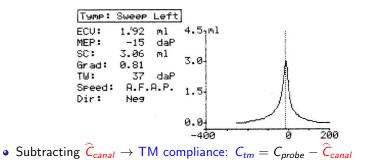
DPOAE Infant Hearing Screening (ROC)


- ROC curves:¹ Reflectance @ 2 [kHz] vs Tympanometry @ 1 [kHz]
- Reflectance discriminates better than Tymp

Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali

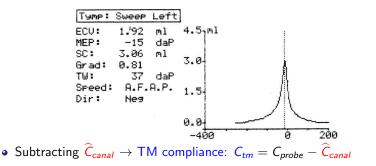

• At 226 Hz, estimate the residual canal compliance \hat{C}_{canal}

$$C_{probe} = C_{canal} + C_{tm} \rightarrow \left. \widehat{C}_{canal} \right|_{\pm 200 \text{ daPa}}$$


• At 226 Hz, estimate the residual canal compliance \hat{C}_{canal}

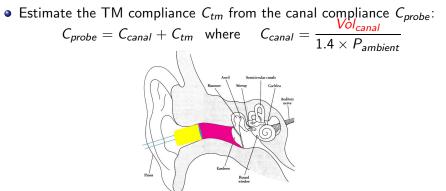
$$C_{probe} = C_{canal} + C_{tm} \rightarrow \left. \widehat{C}_{canal} \right|_{\pm 200 \text{ daPa}}$$

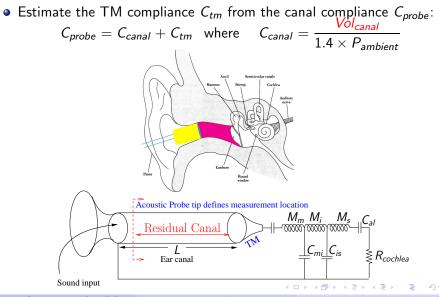
• At 226 Hz, estimate the residual canal compliance \hat{C}_{canal}


$$C_{probe} = C_{canal} + C_{tm} \rightarrow \left. \widehat{C}_{canal} \right|_{\pm 200 \text{ daPa}}$$

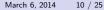
The key objective is to measure SC: the volume of the TM

• At 226 Hz, estimate the residual canal compliance C_{canal}


$$C_{probe} = C_{canal} + C_{tm} \rightarrow \left. \widehat{C}_{canal} \right|_{\pm 200 \text{ daPa}}$$


The key objective is to measure SC: the volume of the TM
 MEP is the second objective

Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali


Objective of tympanometry

Objective of tympanometry

Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali

Tympanometry at higher frequencies

How many people here use Tympanometry?

イロト 人間ト イヨト イヨト

- 31

Tympanometry at higher frequencies

- How many people here use Tympanometry?
- How many people use Tympanometry above 600 Hz? http://www.asha.org/policy/RP1988-00027/

A B K A B K

Tympanometry at higher frequencies

- How many people here use Tympanometry?
- How many people use Tympanometry above 600 Hz? http://www.asha.org/policy/RP1988-00027/
- In what way does Tympanometry help you?

- A E N A E N

• Above 0.5 kHz the interpretation is more difficult since:

²Details in presentation today by Robinson, Pod.III.A 2:45PM [Robinson et al., 2014] Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali March 6, 2014 12 / 25

- Above 0.5 kHz the interpretation is more difficult since:
 - The TM admittance is not simply a compliance at higher frequencies

²Details in presentation today by Robinson, Pod.III.A 2:45PM [Robinson et al., 2014] Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali March 6, 2014 12 / 25

- Above 0.5 kHz the interpretation is more difficult since:
 - The TM admittance is not simply a compliance at higher frequencies
 - **2** The TM admittance $Y_{tm}(f)$ is distorted by errors in estimates of the residual canal compliance C_{canal} Rabinowitz [1981],

²Details in presentation today by Robinson, Pod.III.A 2:45PM [Robinson et al., 2014] Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali March 6, 2014 12 / 25

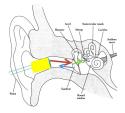
- Above 0.5 kHz the interpretation is more difficult since:
 - The TM admittance is not simply a compliance at higher frequencies
 - 2 The TM admittance $Y_{tm}(f)$ is distorted by errors in estimates of the residual canal compliance C_{canal} Rabinowitz [1981],
 - Oue to Residual Canal standing waves (above 3 kHz)

²Details in presentation today by Robinson, Pod.III.A 2:45PM [Robinson et al., 2014] Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali March 6, 2014 12 / 25

- Above 0.5 kHz the interpretation is more difficult since:
 - The TM admittance is not simply a compliance at higher frequencies
 - The TM admittance $Y_{tm}(f)$ is distorted by errors in estimates of the residual canal compliance C_{canal} Rabinowitz [1981],
 - Oue to Residual Canal standing waves (above 3 kHz)
- Possible Solution:

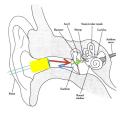
²Details in presentation today by Robinson, Pod.III.A 2:45PM [Robinson et al., 2014] Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali March 6, 2014 12 / 25

- Above 0.5 kHz the interpretation is more difficult since:
 - The TM admittance is not simply a compliance at higher frequencies
 - **2** The TM admittance $Y_{tm}(f)$ is distorted by errors in estimates of the residual canal compliance C_{canal} Rabinowitz [1981],
 - Oue to Residual Canal standing waves (above 3 kHz)
- Possible Solution:
 - \bigcirc Measure wide band Admittance/Reflectance between 0.2 6 [kHz] ²

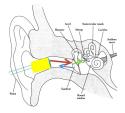

12 / 25

²Details in presentation today by Robinson, Pod.III.A 2:45PM [Robinson et al., 2014] Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali March 6, 2014

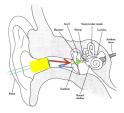
• Wide-band admittance measured with a "Thevenin" calibrated probe


- Wide-band admittance measured with a "Thevenin" calibrated probe
- A "Thevenin" source calibration is not simply sensitivity [Pa/Volt]

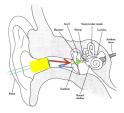
- Wide-band admittance measured with a "Thevenin" calibrated probe
- A "Thevenin" source calibration is not simply sensitivity [Pa/Volt]
- A Wideband pressure chirp is played in ear canal


13 / 25

- Wide-band admittance measured with a "Thevenin" calibrated probe
- A "Thevenin" source calibration is not simply sensitivity [Pa/Volt]
- A Wideband pressure chirp is played in ear canal


② Canal pressure measured by probe microphone

- Wide-band admittance measured with a "Thevenin" calibrated probe
- A "Thevenin" source calibration is not simply sensitivity [Pa/Volt]
- A Wideband pressure chirp is played in ear canal


- 2 Canal pressure measured by probe microphone
- **9** Pressure converted into the wideband probe admittance $Y_{probe}(f)$

- Wide-band admittance measured with a "Thevenin" calibrated probe
- A "Thevenin" source calibration is not simply sensitivity [Pa/Volt]
- A Wideband pressure chirp is played in ear canal

- ② Canal pressure measured by probe microphone
- **③** Pressure converted into the wideband probe admittance $Y_{probe}(f)$
- Canal admittance Y_{canal}(f) estimated and removed Pod.III.A, Today at 2:45 PM: Robinson & Allen

- Wide-band admittance measured with a "Thevenin" calibrated probe
- A "Thevenin" source calibration is not simply sensitivity [Pa/Volt]
- A Wideband pressure chirp is played in ear canal

- ② Canal pressure measured by probe microphone
- **③** Pressure converted into the wideband probe admittance $Y_{probe}(f)$
- Canal admittance Y_{canal}(f) estimated and removed Pod.III.A, Today at 2:45 PM: Robinson & Allen
- resulting in quality estimates of the TM admittance Y_{tm}

Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali

 <u>Goal</u>: Characterize the effect of Negative middle ear pressure (NMEP) on the wide-band (0.2-6 kHz) Tympanic membrane (TM) admittance³

³S. Thompson & PhD Advisor G. Long, CUNY, 2013 < □ > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2) > < (2)

- <u>Goal</u>: Characterize the effect of Negative middle ear pressure (NMEP) on the wide-band (0.2-6 kHz) Tympanic membrane (TM) admittance³
- <u>Task:</u> 8 subjects were trained to induce 2 ME pressure conditions: Ambient and NMEP, interleaved 8 times with 8 test-retests, resulting in 2*8*8=128 measurements/ear:
 - **1** Tympanometry $Y_{tm}(P_{induced}, @226 \text{ Hz})$, i.e., admittance vs. induced pressure
 - Reflectance/Admittance $Y_{tm}(P_{induced}, f) \ 0.2 \le f \le 6$ [kHz];

- <u>Goal</u>: Characterize the effect of Negative middle ear pressure (NMEP) on the wide-band (0.2-6 kHz) Tympanic membrane (TM) admittance³
- <u>Task:</u> 8 subjects were trained to induce 2 ME pressure conditions: Ambient and NMEP, interleaved 8 times with 8 test-retests, resulting in 2*8*8=128 measurements/ear:
 - Q Tympanometry Y_{tm}(P_{induced}, @226 Hz), i.e., admittance vs. induced pressure
 Q Reflectance/Admittance Y_{tm}(P_{induced}, f) 0.2 ≤ f ≤ 6 [kHz];
- <u>Methods</u>: Compare TM admittance $Y_{tm}(f)$, from 0.2 < f < 6 [kHz]:
 - Clinically–Normal middle ears
 - **2** Ambient: (NMEP \approx 0)
 - Solution Pressurized: < -50 daPa of NMEP
 - Conductance: $G_{tm}(f) = \Re Y_{tm}(f)$
 - Susceptance: $B_{tm}(f) = \Im Y_{tm}(f)$

³S. Thompson & PhD Advisor G. Long, CUNY, 2013 < □ → < ♂ → < ≡ → < ≡ →

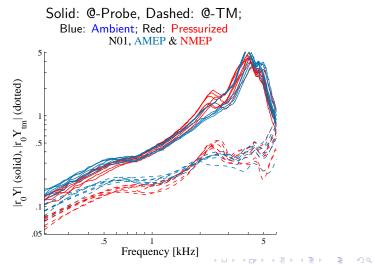
Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali

- <u>Goal</u>: Characterize the effect of Negative middle ear pressure (NMEP) on the wide-band (0.2-6 kHz) Tympanic membrane (TM) admittance³
- <u>Task:</u> 8 subjects were trained to induce 2 ME pressure conditions: Ambient and NMEP, interleaved 8 times with 8 test-retests, resulting in 2*8*8=128 measurements/ear:
 - **3** Tympanometry $Y_{tm}(P_{induced}, @226 \text{ Hz})$, i.e., admittance vs. induced pressure **3** Reflectance/Admittance $Y_{tm}(P_{induced}, f) 0.2 \le f \le 6 \text{ [kHz]};$
- <u>Methods</u>: Compare TM admittance $Y_{tm}(f)$, from 0.2 < f < 6 [kHz]:
 - Clinically–Normal middle ears
 - **2** Ambient: (NMEP \approx 0)
 - Solution Pressurized: < -50 daPa of NMEP
 - Conductance: $G_{tm}(f) = \Re Y_{tm}(f)$
 - Susceptance: $B_{tm}(f) = \Im Y_{tm}(f)$
- Does everyone understand the experiment?

³S. Thompson & PhD Advisor G. Long, CUNY, 2013 < □ > < ♂ > < ≡ > < ≡ >

Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali

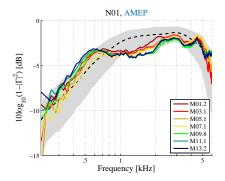
Effect of the Residual Ear Canal on $Y_{tm}(f)$


• The canal admittance $Y_{canal}(f)$ significantly modifies $Y_{tm}(f)$

<ロ> (日) (日) (日) (日) (日)

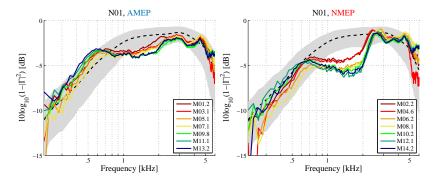
- 2

Effect of the Residual Ear Canal on $Y_{tm}(f)$

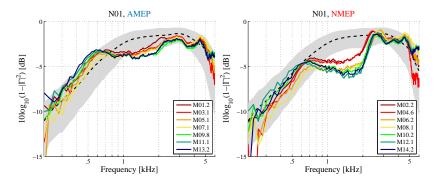

- The canal admittance $Y_{canal}(f)$ significantly modifies $Y_{tm}(f)$
- Note large standing wave at 4 kHz @-probe (not present @-TM)

Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali

Effect of NMEP on Absorbance: Subj N01


• Ambient AMEP and Pressurized NMEP Absorbance [dB] (N01) NOTE: Absorbance = 1- Power Reflectance = Transmittance in dB units

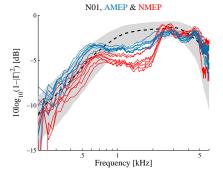
March 6, 2014 16 / 25


Effect of NMEP on Absorbance: Subj N01

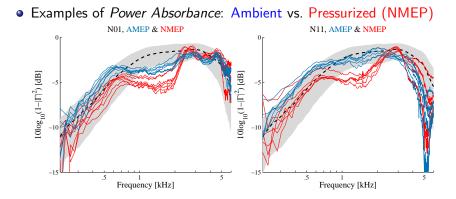
• Ambient AMEP and Pressurized NMEP Absorbance [dB] (N01) NOTE: Absorbance = 1- Power Reflectance = Transmittance in dB units

Effect of NMEP on Absorbance: Subj N01

• Ambient AMEP and Pressurized NMEP Absorbance [dB] (N01) NOTE: Absorbance = 1- Power Reflectance = Transmittance in dB units


• Note the separation in $Y_{tm}(f)$ for Ambient and Pressurized vs. f

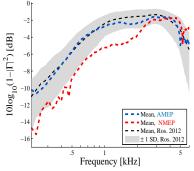
Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali Man


March 6, 2014 16 / 25

Comparison across 2 subjects

• Examples of *Power Absorbance*: Ambient vs. Pressurized (NMEP)

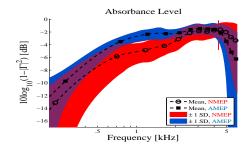
Comparison across 2 subjects



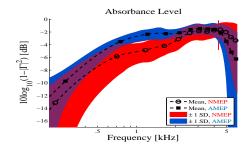
• Two different subjects N01 & N11

Absorbance separation (all ears): Ambient vs. NMEP

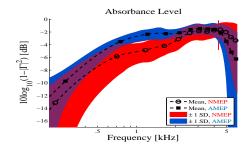
• NYC/CUNY Mean same as Boston/MEEI mean (black dashed)


Absorbance Level

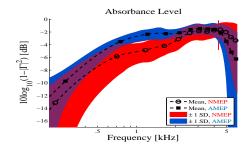
Absorbance separation (all ears): Ambient vs. NMEP


• NYC/CUNY Mean same as Boston/MEEI mean (black dashed) Absorbance Level Absorbance Level 0 -2 $10\log_{10}(1-|\Gamma|^2)$ [dB] -4 $10\log_{10}(1-|\Gamma|^2)$ [dB -6 -6 -8-12 -12Mean. NMEP lean. AME -14-14Jean AMEP Mean NMEP - Mean, Ros. 2012 1 SD. NMEE -16 -16± 1 SD, Ros. 201 5 5 5 Frequency [kHz] Frequency [kHz]

- The means below 500 Hz significantly overlap: $\pm\sigma$ (1-SD)
- The two pressurized conditions separate $\pm\sigma$ over 1-oct (0.75-2.0 kHz)
- For diagnostics, the most useful TM measures are between 0.5-6 [kHz]

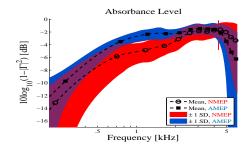

 Given the small separation in admittance @226 Hz, and the larger separation between 0.7-2 kHz,

Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali



 Given the small separation in admittance @226 Hz, and the larger separation between 0.7-2 kHz, MEP @226 [Hz] & ΔY_{tm}(P_{induced}) seem uncorrelated

March 6, 2014 19 / 25



- Given the small separation in admittance @226 Hz, and the larger separation between 0.7-2 kHz, MEP @226 [Hz] & $\Delta Y_{tm}(P_{induced})$ seem uncorrelated
- $\Delta Y_{tm}(P_{induced}, f > 0.5 \text{ kHz})$ is not predicted from MEP@226

- Given the small separation in admittance @226 Hz, and the larger separation between 0.7-2 kHz, MEP @226 [Hz] & $\Delta Y_{tm}(P_{induced})$ seem uncorrelated
- ΔY_{tm}(P_{induced}, f > 0.5 kHz) is not predicted from MEP@226
 One must directly measure Y_{tm}(f) between 0.5-3 [kHz]

(4) E (4) = (4) E (4)

- Given the small separation in admittance @226 Hz, and the larger separation between 0.7-2 kHz, MEP @226 [Hz] & $\Delta Y_{tm}(P_{induced})$ seem uncorrelated
- $\Delta Y_{tm}(P_{induced}, f > 0.5 \text{ kHz})$ is not predicted from MEP@226
 - One must directly measure $Y_{tm}(f)$ between 0.5-3 [kHz]
 - The reason(s) for this are not known (speculations are possible)

Back to our 4 questions:

• What is the evidence?

3

Back to our 4 questions:

• What is the evidence? I.E.: Is there a case for Reflectance over Tymp?

Back to our 4 questions:

• What is the evidence? I.E.: Is there a case for Reflectance over Tymp? YES:

Back to our 4 questions:

 What is the evidence? I.E.: Is there a case for Reflectance over Tymp? YES:
 WAI is precise. 226 Hz Tymp is not such a direct measure.
 MEP is poorly correlated with ΔY_{tm}(f)

Back to our 4 questions:

 What is the evidence? I.E.: Is there a case for Reflectance over Tymp? YES:
 WAI is precise. 226 Hz Tymp is not such a direct measure.
 MEP is poorly correlated with ΔY_{tm}(f)

• Is it practical?

Back to our 4 questions:

 What is the evidence? I.E.: Is there a case for Reflectance over Tymp? YES:
 WAI is precise. 226 Hz Tymp is not such a direct measure.
 MEP is poorly correlated with ΔY_{tm}(f)

• Is it practical? Yes:

Back to our 4 questions:

 What is the evidence? I.E.: Is there a case for Reflectance over Tymp? YES:
 WAI is precise. 226 Hz Tymp is not such a direct measure.
 MEP is poorly correlated with ΔY_{tm}(f)

• Is it practical? Yes: WAI is a working well defined technology.

Back to our 4 questions:

 What is the evidence? I.E.: Is there a case for Reflectance over Tymp? YES:
 WAI is precise. 226 Hz Tymp is not such a direct measure.
 MEP is poorly correlated with ΔY_{tm}(f)

- Is it practical? Yes: WAI is a working well defined technology.
- To what extent?

Back to our 4 questions:

- What is the evidence? I.E.: Is there a case for Reflectance over Tymp? YES:
 WAI is precise. 226 Hz Tymp is not such a direct measure.
 MEP is poorly correlated with ΔY_{tm}(f)
- Is it practical? Yes: WAI is a working well defined technology.
- To what extent? WAI may be purchased: FDA status

Back to our 4 questions:

- What is the evidence? I.E.: Is there a case for Reflectance over Tymp? YES:
 WAI is precise. 226 Hz Tymp is not such a direct measure.
 MEP is poorly correlated with ΔY_{tm}(f)
- Is it practical? Yes: WAI is a working well defined technology.
- To what extent? WAI may be purchased: FDA status
- When can we have WAI?

Back to our 4 questions:

- What is the evidence? I.E.: Is there a case for Reflectance over Tymp? YES:
 WAI is precise. 226 Hz Tymp is not such a direct measure.
 MEP is poorly correlated with ΔY_{tm}(f)
- Is it practical? Yes: WAI is a working well defined technology.
- To what extent? WAI may be purchased: FDA status
- When can we have WAI? Now, from Mimosa Acoustics.
- For the details see: Hunter, Prieve, Beers, Rosowski, Nakajima, ...

CONCLUSIONS:

• Tymp has some serious limitations, now addressed by WAI.

イロト イポト イヨト イヨト

- 2

CONCLUSIONS:

- Tymp has some serious limitations, now addressed by WAI.
- These issues have been well documented Rabinowitz [1981]

3

CONCLUSIONS:

- Tymp has some serious limitations, now addressed by WAI.
- These issues have been well documented Rabinowitz [1981]
- CUNY study clarifies many of these issues Robinson (Pod.IIIA, 2:45PM)

Wideband reflectance on the OtoStat (Handheld Version)

Image: A math a math

3

Wideband reflectance on HearID (USB-Desktop Version)

March 6, 2014 23 / 25

• 2 versions: HearID laptop & OtoStat handheld

• • = • • =

3

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]
- WAI can replace tympanometry (Tymp) (More research required)

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]
- WAI can replace tympanometry (Tymp) (More research required)
- WAI faster than Tymp (i.e., no pressurization required)

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]
- WAI can replace tympanometry (Tymp) (More research required)
- WAI faster than Tymp (i.e., no pressurization required)
- WAI more comfortable than Tymp (i.e., no pressurization required)

御下 不是下 不是下 一里

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]
- WAI can replace tympanometry (Tymp) (More research required)
- WAI faster than Tymp (i.e., no pressurization required)
- WAI more comfortable than Tymp (i.e., no pressurization required)
- Can use CPT codes

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]
- WAI can replace tympanometry (Tymp) (More research required)
- WAI faster than Tymp (i.e., no pressurization required)
- WAI more comfortable than Tymp (i.e., no pressurization required)
- Can use CPT codes
 - CPT 92567-M Tympanometry with a modifier

▲冊▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]
- WAI can replace tympanometry (Tymp) (More research required)
- WAI faster than Tymp (i.e., no pressurization required)
- WAI more comfortable than Tymp (i.e., no pressurization required)
- Can use CPT codes
 - CPT 92567-M Tympanometry with a modifier
 - CPT 92700 Unlisted otorhinolaryngological

通 ト イ ヨ ト イ ヨ ト う ロ へ つ

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]
- WAI can replace tympanometry (Tymp) (More research required)
- WAI faster than Tymp (i.e., no pressurization required)
- WAI more comfortable than Tymp (i.e., no pressurization required)
- Can use CPT codes
 - CPT 92567-M Tympanometry with a modifier
 - CPT 92700 Unlisted otorhinolaryngological
- OAE with the same probe insertion.

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]
- WAI can replace tympanometry (Tymp) (More research required)
- WAI faster than Tymp (i.e., no pressurization required)
- WAI more comfortable than Tymp (i.e., no pressurization required)
- Can use CPT codes
 - CPT 92567-M Tympanometry with a modifier
 - CPT 92700 Unlisted otorhinolaryngological
- OAE with the same probe insertion.
- $\Delta Y_{tm}(f)$ more meaningful than 226 [Hz] MEP

- ▲ 同 ▶ ▲ 目 ▶ → 目 → のへの

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]
- WAI can replace tympanometry (Tymp) (More research required)
- WAI faster than Tymp (i.e., no pressurization required)
- WAI more comfortable than Tymp (i.e., no pressurization required)
- Can use CPT codes
 - CPT 92567-M Tympanometry with a modifier
 - CPT 92700 Unlisted otorhinolaryngological
- OAE with the same probe insertion.
- $\Delta Y_{tm}(f)$ more meaningful than 226 [Hz] MEP
- MEP highly variable in the normal ME

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 ● の Q @

- 2 versions: HearID laptop & OtoStat handheld
- Provides extensive CHL diagnostics (extensive literature)
- WAI is Wide-band: 0.2 6 [kHz]
- WAI can replace tympanometry (Tymp) (More research required)
- WAI faster than Tymp (i.e., no pressurization required)
- WAI more comfortable than Tymp (i.e., no pressurization required)
- Can use CPT codes
 - CPT 92567-M Tympanometry with a modifier
 - CPT 92700 Unlisted otorhinolaryngological
- OAE with the same probe insertion.
- $\Delta Y_{tm}(f)$ more meaningful than 226 [Hz] MEP
- MEP highly variable in the normal ME
 - $Y_{tm}(f)$ needs to be directly measure, NOT predicted from MEP

◆ロ → ▲ □ → ▲ 三 → ▲ □ → ▲ □ → ▲ □ → ▲ □ →

J. B. Allen, P. S. Jeng, and H. Levitt. Evaluation of human middle ear function via an acoustic power assessment. Journal of Republication Research and Development, 42(4 Suppl 2):63–78, 2005. N. Beersch. Shimaz, B. D. Westerberg, and F. K. Kozak. Wideband reflectance in normal caucasian and chinese

- A. N. Beers DI. Shinnaz J.B. D. Westerberg, and F. K. Kozak. Wideband reflectance in normal caucasian and chinese school-aged children and in children with otitis media with effusion. *Ear and Hearing*, 31(2):221–33, 2010.
- M. P. Feeney, I. L. Grant, and D. M. Mills. Wideband energy reflectance measurements of ossicular chain discontinuity and repair in human temporal bone. Ear and Hearing, 30(4):391–400, 2009.
- MP Feeney, IL Grant, and LP Marryott. Wideband energy reflectance measurements in adults with middle-ear disorders. J. Speech Lang. Hear Res., 46(4):901–11, 2003.
- L. L. Hunter, M. P. Feeney, J. A. Lapsley Miller, P. S. Jeng, and S. Bohning. Wideband reflectance in newborns: Normative regions and relationship to hearing-screening results. *Ear Hear*, 31(5):599–610, 2010.
- Lisa Hunter. Middle ear and reflectance. Am. Acad. of Aud., 2007.
- DH Keefe, CA Sanford, JC Ellison, DF Fitzpatrick, and MP Gorga. Wideband aural acoustic absorbance predicts conductive hearing loss in children. International Journal of Audiology, 51:880–891, 2012.
- HH Nakajima, DV Pisano, C Roosli, MA Hamade, GR Merchant, L Mafoud, CF Halpin, JJ Rosowski, and SN Merchant. Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: A preliminary study. Ear and Hearing, 33:35–43, 2012.
- Cac T. Nguyen, Sarah R. Robinson, Woonggyu Jung, Michael A. Novak, Stephen A. Boppart, and Jont B. Allen. Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements. *Hearing Research*, 301(0):193–200, 2013. ISSN 0378-5955. doi: 10.1016/j.heares.2013.04.001. URL http://www.sciencedirect.com/science/article/pii/S0378595513000944. jce:title¿MEMRO 2012 Middle-Ear Bridge between Science and Otologyi/ce:title¿.
- Beth A. Prieve, Kathy R. Vander Werff, Jonathan L. Preston, , and Lea Georgantas. Identification of conductive hearing loss in young infants using tympanometry and wideband reflectance. *Ear and Hearing*, 34(1):168–178, 2012.
- W. M. Rabinowitz. Measurement of the acoustic input immittance of the human ear. J. Acoust. Soc. Am., 70:1025-1035, 1981.
- Sarah Robinson, Suzanne Thompson, and Jont B. Allen. Estimating ear canal volume and eardrum compliance from wideband reflectance. In AAS, Scottsdale AZ, 2:45 PM, Pod. III.A, 2014.
- J. J. Rosowski, H. H. Nakajima, M. A. Hamade, L. Mafoud, G. R. Merchant, C. F. Halpin, and S. N. Merchant. Ear-canal reflectance, umbo velocity, and tympanometry in normal-hearing adults. *Ear and Hearing*, 2011.
- Chris A. Sanford, Douglas H. Keefe, Yi-Wen Liu, Denis Fitzpatrick, Ryan W. McCreery, Dawna E. Lewis, and Michael P. Gorga. Sound-conduction effects on distortion-product otoacoustic emission screening outcomes in newborn infants: Test performance of wideband acoustic transfer functions and 1-khz tympanometry. Ear and Hearing, 30(6):635–652, 2009.
- N. Shahnaz, N. Longridge, and D. Bell. Wideband energy reflectance patterns in preoperative and post-operative otosclerotic ears. International Journal of Audiology, 48(5):240–7, 2009.
- S. Voss, N. Horton, R. Woodbury, and K. Sheffield. Sources of variability in reflectance measurements on normal cadaver ears. *Ear and Hearing*, 29:651–665, 2008.
- S. E. Voss, J. J. Rosowski, and S. N. Merchant. Middle ear function with tympanic-membrane perforations. I. measurements and mechanisms. JASA, 110:14321444, 2001.
- S.E. Voss, G.R. Merchant, and N.J. Horton. Effects of middle-ear disorders on power reflectance measured in cadaveric ear canals. Far and Hearing 33(2):195-208. 2012. doi: 10.1097/AUD.0b013e31823235b5.
- Jont B Allen, Sarah Robinson (UIUC) Sue T Real ear measurements: Diagnostics and cali

March 6, 2014 25 / 25