

Forward-pressure level calibration improves accuracy and reliability of pure-tone audiometry

Judi A. Lapsley Miller,¹ Sarah R. Robinson,^{1,2} Charlotte M. Reed,³ Zachary D. Perez,³ Jont B. Allen^{1,2}

¹ Mimosa Acoustics ² University of Illinois at Urbana-Champaign ³ Research Lab of Electronics, Massachusetts Institute of Technology

Audiogram reliability

- Pure-tone audiometry is less reliable above 4 [kHz] (Dobie, 1983)
- Headphone/earphone fittings, and individual-ear acoustics cause stimulus levels to vary from target
- Early noise-induced hearing loss occurs at high frequencies
 - Test-retest reliability limits the detection of a *significant threshold* shift (STS) (Lapsley Miller 2004, Dobie 2005)
 - Hearing conservation programs (HCPs) typically do not use 6-8 [kHz] due to reliability

Traditional stimulus calibration

- Pure-tone audiometry is conducted using headphones (e.g. TDH-39) or insert earphones (e.g. ER-2,3)
- Calibrated using an ear simulator "coupler" (average normal ear)
 - Individual-ear acoustics can vary considerably from average
 - Sound pressure level (SPL) depends on enclosed volume
- TDH-39 is widely used, despite high variability at 6 [kHz]

Image credit: Benson Medical Instruments, Etymotic Research

In-the-ear (ITE) calibration

Using probes (earphone + <u>microphone</u>) designed for otoacoustic emissions (OAE) testing, we can calibrate the probe *in situ*

- Evaluate the acoustics of an individual ear (e.g. "real-ear calibration")
- Set the stimulus level based on microphone measurements

However, acoustic standing waves (SWs) in the ear canal above 4 [kHz] cause large variations in the microphone pressure

Ear-canal standing waves

- *Standing waves* (SW) are due to eardrum-probe reflections
- The probe pressure is a sum of forward (+) and reverse (-) waves

 $P = P^+ + P^-$

Depending on their relative phase, P⁺ and P⁻ can largely cancel

- The SW frequency is related to a distance of $\lambda/4$ (4 [kHz] \leftrightarrow 22 [mm])
 - SW frequency decreases as ear-canal length increases
 - Eardrum delay can also lower the SW frequency (Puria & Allen 1998)

In-the-ear (ITE) calibration

Using probes (earphone + <u>microphone</u>) designed for otoacoustic emissions (OAE) testing, we can calibrate the probe *in situ*

- 1. Measure the pressure level at the probe to a wideband stimulus
- Characterize the acoustics of an individual ear (e.g. "real-ear calibration")
- 3. Remove standing wave (SW) effects related to probe insertion

2 & 3 are accomplished using *wideband acoustic immittance* (WAI) <u>Two-step calibration</u>: Thévenin + ITE

Forward vs. total pressure

- If the stimulus level is set based on the total microphone pressure
 (P = P⁺ + P⁻), it will be <u>too high</u> at the SW frequency
- The level should be set based on the forward pressure level (FPL) (Souza et al. 2014, Withnell et al. 2009, Scheperle et al. 2008)

$$R = P^{-}/P^{+} \qquad P = P^{+} + P^{-}$$

The "reflectance"
$$P^{+} = \frac{P}{1+R}$$

• The forward and total pressure can differ in level by 20 [dB]!!

Current study

- Compare reliability of 3 different calibration procedures (under typical testing conditions)
 - 1. Headphones calibrated in a coupler (standard audiometer, dB-HL)
 - 2. OAE probe calibrated using total microphone pressure "SPL" (dB-SPL)
 - 3. OAE probe calibrated using forward pressure "FPL" (dB-SPL)
- SPL audiograms are expected to have a notch (peak) at the SW frequency (Lewis et al. 2009, McCreery et al. 2009, Withnell et al. 2009)
- FPL audiograms are expected to be less variable across probe insertions

Experiment

- Fifteen subjects (10 women, 5 men; 18-30 yrs of age) with hearing levels up to 50 [dB-HL]
- Two audiometers were used for testing
 - Benson CCA-200mini with TDH-39P headphones
 - Mimosa Acoustics OtoStat prototype with an ER-10C probe
- 10 audiograms were collected for each subject on each audiometer (pure-tone thresholds @ 1, 2, 3, 4, 6, 8, 0.5 [kHz])
 - Each audiogram was taken with a <u>separate fitting</u> of the headphone or insert earphone
 - Audiograms were collected using an automated modified
 Hughson-Westlake method with pulsed tones

OtoStat calibration: SPL vs. FPL

- A single ITE calibration yielded both SPL
 (P) and FPL (P⁺) audiograms
- Stimulus level range set based on FPL
- The SW causes a minimum in the probe microphone pressure near 5 [kHz]
- At low frequencies

$$|P| = |P^+ + P^-| = |P^+(1+R)| \approx 2|P^+|$$

corresponds to a difference of 6 [dB]

Microphone pressure: SPL vs. FPL

Stimulus difference: SPL-FPL

Audiogram accuracy

- SPL calibration estimates a lower signal level, thus a better hearing level at the SW frequency
- FPL is expected to better represent the effective stimulus level (compared to SPL)
- SPL calibration could lead to false negatives at the SW frequency when detecting hearing loss

Audiogram accuracy & reliability

- SW effects occur between 6 and 8 [kHz] (probe depth changes across measurements)
- Effects of the SW depend on frequency, depth, and width of the SPL-FPL minimum
- The FPL audiogram is reliable, while the SPL audiogram is highly variable (could lead to false negatives)

Audiogram reliability

- <u>Benson vs. OtoStat</u>: variability in [dB] may be compared
- FPL-calibrated audiograms are the most reliable

Audiogram reliability

FPL improves significant threshold shift (STS) criteria (Lapsley Miller 2004) by 10 [dB] at 6 [kHz] and 5 [dB] at 8 [kHz]

Conclusions

- FPL calibration improves audiogram accuracy
 - Standing wave effects may seem small on average, but can have
 20 [dB] effects in individual ears
- FPL calibration improves audiogram reliability
 - FPL accounts for variability due to SWs across probe insertions
 - ITE + FPL audiograms are much less variable than the industry standard Benson audiograms
- Implications for hearing conservation programs (HCPs)
 - Smaller significant threshold shift (STS) criteria at 6 and 8 [kHz]
 - \rightarrow Earlier detection of hearing loss
 - \rightarrow Improved monitoring for ototoxicity
- Normative studies are needed to convert FPL results to dB-HL

Thank you!

Thanks to Lynne Marshall for advice on the experimental protocols. Thanks to Bill Ahroon (U.S. Army Aeromedical Research Laboratory) for the loan of an Army-issue audiometer. This study was supported by an SBIR award from Office of the Secretary of Defence under the contract number N00014-15-C-0046.

References

ANSI (2004a). "Methods for Manual Pure-Tone Threshold Audiometry (ANSI S3.21-2004)," (American National Standards Institute, New York). ANSI (2004b). "Specifications for audiometers (ANSI S3.6-2004)," (American National Standards Institute, New York).

Department of Defense (2004). Department of Defense Instruction 6055.12: DOD Hearing Conservation Program (HCP) (USD/AT&L).

- Dobie, R. A. (1983). "Reliability and validity of industrial audiometry: implications for hearing conservation program design," Laryngoscope 93, 906-927.
- Dobie, R. A. (2005). "Audiometric threshold shift definitions: simulations and suggestions," Ear Hear. 26, 62-77.
- Henry, J. A., Flick, C. L., Gilbert, A., Ellingson, R. M., and Fausti, S. A. (2001). "Reliability of hearing thresholds: computer-automated testing with ER-4B Canal Phone earphones," J. Rehabil. Res. Dev. 38, 567-581.
- Lapsley Miller, J. A., Marshall, L., and Heller, L. M. (2004). "A longitudinal study of changes in evoked otoacoustic emissions and pure-tone thresholds as measured in a hearing conservation program," Int. J. Audiol. 43, 307-322.
- Lewis, J.D., McCreery, R. W., Neely, S. T., and Stelmachowicz, P. G. (2009). "Comparison of *in situ* calibration methods for quantifying input to the middle ear," J. Acoust. Soc. Am. 126 (6), 3114-3124.
- Killion, M. C., and Villchur, E. (1989). "Comments on "Earphones in Audiometry" [Zwislocki et al., J. Acoust. Soc. Am. 83, 1688-1689 (1988)]," J. Acoust. Soc. Am. 85, 1775-1779.
- McCreery, R. W., Pittman, A., and Lewis, J. (2009). "Use of forward pressure level to minimize the influence of acoustic standing waves during probe-microphone hearing-aid verification," J. Acoust. Soc. Am. 126 (1), 15-24.
- McMillan, G. P., Reavis, K. M., Konrad-Martin, D., and Dille, M. F. (2013). "The statistical basis for serial monitoring in audiology," Ear Hear. 34, 610-618.
- Puria, S. and Allen, J. B. (1998). "Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay." J. Acoust. Soc. Am., 104, 3463–3481.
- Scheperle, R. A., Neely, S. T., Kopun, J. G., and Gorga, M. P. (2008). "Influence of *in situ* sound-level calibration on distortion-product otoacoustic emission variability," J. Acoust. Soc. Am. 124, 288-300.
- Souza, N. N., Dhar, S., Neely, S. T., and Siegel, J. H. (2014). "Comparison of nine methods to estimate ear-canal stimulus levels," J. Acoust. Soc. Am. 136, 1768-1787.
- Withnell, R. H., Jeng, P. S., Waldvogel, K., Morgenstein, K., and Allen, J. B. (2009). "An in situ calibration for hearing thresholds," J. Acoust. Soc. Am. 125, 1605-1611.

Audiogram results

For comparison with the OtoStat prototype audiometer, the dB-HL results were converted back to dB-SPL by removing the THD-39 headphone adjustment (ANSI, 2004b)