

Effects of static negative middleear pressure on wideband acoustic immittance

Sarah Robinson, Suzanne Thompson, Jont Allen

Negative middle ear pressure (NMEP)

- Static NMEP is very common
 - Typically due to Eustachian tube dysfunction
 - Often occurs concurrently with middle ear fluid or infection
- Middle ear (ME) pressure in normal ears varies
 - slightly negative during waking hours
 - a TPP smaller than -100 [daPa] is 'normal'
- NMEP can affect other acoustic measurements such as otoacoustic emissions (OAEs)

Wideband acoustic immittance (WAI)

- WAI refers to a set of quantities, including the admittance, impedance, reflectance, absorbance, etc.
- Many studies consider the <u>power reflectance</u> and <u>absorbance</u> (≈ independent of ear canal length)

$$|\Gamma(f)|^{2} = \left| \frac{p_{reflected}(f)}{p_{incident}(f)} \right|^{2}$$
$$\left| \Gamma(f) \right|^{2} \approx \left| \Gamma_{tm}(f) \right|^{2}$$
$$A(f) = 1 - \left| \Gamma(f) \right|^{2}$$

Experiment

- WAI was measured with ambient canal pressure
- Subjects with <u>normal</u> middle ears induced NMEP via the Toynbee maneuver (Sun & Shaver 2009, 2013)
- ME pressure was assessed <u>separately</u> via tympanometry
 - ME pressure = tympanic peak pressures (TPP)
 - 8 trials at ambient middle ear pressure (AMEP) were alternated with 8 trials at NMEP
 - Subjects were able to induce consistent NMEPs

• Focus on individual ears (lots of retest data)

Experiment

WAI Results: Power Absorbance

WAI Results: Power Absorbance

AMEP

NMEP

Wideband changes in power absorbance due to NMEP...

- vary in both magnitude and frequency range
- do not appear to have a simple dependence on TPP

WAI Results: Power Absorbance

Dependence on static ME pressure

WAI at the tympanic membrane (TM-WAI)

- The unknown residual ear canal (REC) effect may be factored out of the complex reflectance (Robinson et al., 2013)
- Using our methods, $\Gamma_{\rm rec}(f)$ may account for a lossless REC of varying area

WAI at the tympanic membrane (TM-WAI)

- At low frequencies, the REC volume is approximated by a compliance
- A resistor is necessary to match the transmission lines of the middle ear and cochlea (Zwislocki 1962, Lynch 1982)

Residual ear canal (REC) volume

The REC volume does not depend on NMEP

•

TM Compliance

The REC volume does not depend on NMEP

• The TM compliance does depend on NMEP

Residual Ear Canal Volumes

Mechanisms for NMEP-dependent change

- Decreased compliance (increased stiffness) at the TM could be due to multiple ME structures
- WAI changes resemble data with a stiffened annular ligament (AL) (e.g. acoustic reflex)
- NMEP causes a retraction of the TM (Shaver & Sun 2013, Voss et al. 2012)
 - The TM itself functions primarily as a delay line in normal ears (*Puria & Allen 1998*)
 - Nonlinear changes most likely associated with ligaments (reference?)
 - Tensor tympani effects expected to be similar to AL effects, but little data exists to quantify this in humans (Møller 1983)

Conclusions

- NMEP causes the largest change in the power absorbance (1-|Γ|²) from 0.8-1.8 [kHz]
- TPP is a significant, but imperfect predictor of WAI change
 - The relationship between Absorbance and TPP is nonlinear
- WAI changes due to NMEP...
 - Vary in magnitude and frequency range
 - Are consistent with an increased stiffness in the ME, potentially related to the annular ligament and TM-malleus coupling
- The WAI magnitude & phase at the TM are estimated
 - REC volume is effectively removed
 - TM-WAI simply modeled by a compliance and a resistance
 - The TM compliance is highly dependent on NMEP, as expected (but not well predicted by TPP)

Clinical implications

- Severity of WAI changes due to NMEP is highly individual
- WAI changes indicate ears where other measures (e.g. DPOAEs) could be compromised, in a frequency-specific manner
- We can remove the ear canal volume and estimate TM compliance C_{tm} analogous to tympanometry

Thanks for listening!

Contact: srrobin2@illinois.edu

References

- 1. Lynch III, T. J., Nedzelnitsky, V., Peake, W. T. (1982). Input impedance of the cochlea in cat. *J Acoust Soc Am*, 72(1), 108–130.
- 2. Møller, A. R. (1983). Auditory Physiology. Academic Press, Inc., New York, New York.
- 3. Puria, S. & Allen, J. B. (1998). Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. *J Acoust Soc Am, 104,* 3463–3481.
- 4. Robinson, S. R., Nguyen, C. T., Allen, J. B. (2013). Characterizing the ear canal acoustic impedance and reflectance by pole-zero fitting. *Hear Res*, 301, 168–182.
- 5. Rosowski, J. J., Nakajima, H. H., Hamade, M. A., et al. (2012). Ear-canal reflectance, umbo velocity, and tympanometry in normal- hearing adults. *Ear Hear*, 33(1), 19–34.
- 6. Shaver, M. D. & Sun, X. M. (2013). Wideband energy reflectance measurements: effects of negative middle ear pressure and application of a pressure compensation procedure. *J Acoust Soc Am*, 134(1), 332–341.
- 7. Sun, X. M. & Shaver, M. D. (2009). Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans. *Ear Hear*, 30(2), 191–202.
- 8. Voss, S. E., Merchant, G. R., Horton, N. J. (2012). Effects of middle-ear disorders on power reflectance measured in cadaveric ear canals. *Ear Hear,* 33(2), 195–208.
- 9. Zwislocki, J. (1962). Analysis of the middle-ear function. Part I: Input impedance. *J Acoust Soc Am*, 34, 1514–1523.